Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.340455

ABSTRACT

ABSTRACT Progress in cryo-electron microscopy (cryo-EM) has provided the potential for large-size protein structure determination. However, the solution rate for multi-domain proteins remains low due to the difficulty in modeling inter-domain orientations. We developed DEMO-EM, an automatic method to assemble multi-domain structures from cryo-EM maps through a progressive structural refinement procedure combining rigid-body domain fitting and flexible assembly simulations with deep neural network inter-domain distance profiles. The method was tested on a large-scale benchmark set of proteins containing up to twelve continuous and discontinuous domains with medium-to-low-resolution density maps, where DEMO-EM produced models with correct inter-domain orientations (TM-score >0.5) for 98% of cases and significantly outperformed the state-of-the-art methods. DEMO-EM was applied to SARS-Cov-2 coronavirus genome and generated models with average TM-score/RMSD of 0.97/1.4Å to the deposited structures. These results demonstrated an efficient pipeline that enables automated and reliable large-scale multi-domain protein structure modeling with atomic-level accuracy from cryo-EM maps.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.293449

ABSTRACT

Despite considerable research progress on SARS-CoV-2, the direct zoonotic origin (intermediate host) of the virus remains ambiguous. The most definitive approach to identify the intermediate host would be the detection of SARS-CoV-2-like coronaviruses in wild animals. However, due to the high number of animal species, it is not feasible to screen all the species in the laboratory. Given that the recognition of the binding ACE2 proteins is the first step for the coronaviruses to invade host cells, we proposed a computational pipeline to identify potential intermediate hosts of SARS-CoV-2 by modeling the binding affinity between the Spike receptor-binding domain (RBD) and host ACE2. Using this pipeline, we systematically examined 285 ACE2 variants from mammals, birds, fish, reptiles, and amphibians, and found that the binding energies calculated on the modeled Spike-RBD/ACE2 complex structures correlate closely with the effectiveness of animal infections as determined by multiple experimental datasets. Built on the optimized binding affinity cutoff, we suggested a set of 96 mammals, including 48 experimentally investigated ones, which are permissive to SARS-CoV-2, with candidates from primates, rodents, and carnivores at the highest risk of infection. Overall, this work not only suggested a limited range of potential intermediate SARS-CoV-2 hosts for further experimental investigation; but more importantly, it proposed a new structure-based approach to general zoonotic origin and susceptibility analyses that are critical for human infectious disease control and wildlife protection.


Subject(s)
Communicable Diseases
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2002.03173v1

ABSTRACT

As the infection of 2019-nCoV coronavirus is quickly developing into a global pneumonia epidemic, careful analysis of its transmission and cellular mechanisms is sorely needed. In this report, we re-analyzed the computational approaches and findings presented in two recent manuscripts by Ji et al. (https://doi.org/10.1002/jmv.25682) and by Pradhan et al. (https://doi.org/10.1101/2020.01.30.927871), which concluded that snakes are the intermediate hosts of 2019-nCoV and that the 2019-nCoV spike protein insertions shared a unique similarity to HIV-1. Results from our re-implementation of the analyses, built on larger-scale datasets using state-of-the-art bioinformatics methods and databases, do not support the conclusions proposed by these manuscripts. Based on our analyses and existing data of coronaviruses, we concluded that the intermediate hosts of 2019-nCoV are more likely to be mammals and birds than snakes, and that the "novel insertions" observed in the spike protein are naturally evolved from bat coronaviruses.


Subject(s)
Pneumonia
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.04.933135

ABSTRACT

As the infection of 2019-nCoV coronavirus is quickly developing into a global pneumonia epidemic, careful analysis of its transmission and cellular mechanisms is sorely needed. In this report, we re-analyzed the computational approaches and findings presented in two recent manuscripts by Ji et al. (https://doi.org/10.1002/jmv.25682) and by Pradhan et al. (https://doi.org/10.1101/2020.01.30.927871), which concluded that snakes are the intermediate hosts of 2019-nCoV and that the 2019-nCoV spike protein insertions shared a unique similarity to HIV-1. Results from our re-implementation of the analyses, built on larger-scale datasets using state-of-the-art bioinformatics methods and databases, do not support the conclusions proposed by these manuscripts. Based on our analyses and existing data of coronaviruses, we concluded that the intermediate hosts of 2019-nCoV are more likely to be mammals and birds than snakes, and that the "novel insertions" observed in the spike protein are naturally evolved from bat coronaviruses.


Subject(s)
Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL